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A B S T R A C T   

The wild boar (Sus scrofa) population has increased dramatically over the last decades throughout Europe and it 
has become a serious pest. In addition, the common habitat of wild boar and of the tick, Ixodes ricinus, indicates 
the potential of wild boar to play a role in epidemiology of epizootic and zoonotic tick-borne pathogens, 
including Anaplasma phagocytophilum. In Europe, epidemiological cycles and reservoirs of A. phagocytophilum, 
including its zoonotic haplotypes, are poorly understood. In this study, we focused on detection and further 
genetic characterization of A. phagocytophilum and piroplasmids in 550 wild boars from eleven districts of 
Moravia and Silesia in the Czech Republic. 

Using highly sensitive nested PCR targeting the groEL gene, the DNA of A. phagocytophilum was detected in 28 
wild boars (5.1 %) representing six unique haplotypes. The dominant haplotype was found in 21 samples from 7 
different districts. All detected haplotypes clustered in the largest clade representing the European ecotype I and 
the dominant haplotype fell to the subclade with the European human cases and strains from dogs and horses. 
Nested PCR targeting the variable region of the 18S rRNA gene of piroplasmids resulted in one positive sample 
with 99.8 % sequence identity to Babesia divergens. 

The presence of these two pathogens that are primarily circulated by I. ricinus confirms the local participation 
of wild boar in the host spectrum of this tick and warrants experimental studies to address wild boar as a 
reservoir of zoonotic haplotypes of A. phagocytophilum.   

1. Introduction 

The wild boar (Sus scrofa) population has increased dramatically 
over the last decades throughout Europe and it has become a serious 
pest. After the Second World War decline due to overhunting, the pop
ulation has grown steadily since mainly due to favorable management 
(Maillard et al., 2010), landscapes structural changes (Morelle et al., 
2016), and climate change (Markov et al., 2019). Together with the 
highest reproductive rate among ungulates (Bieber and Ruf, 2005; 
Holland et al., 2009) and very limited natural mortality caused mostly 
by extreme weather conditions, diseases and predation by wolves (Canis 
lupus) (Jędrzejewski et al., 1992; Massei et al., 2015; Nores et al., 2008; 

Okarma et al., 1995), wild boar population has grown along with its 
negative impacts including (i) damage to crop and amenities (Lombar
dini et al., 2017), (ii) reduction in plant and animal abundance and 
richness (Oja et al., 2017), and (iii) a reservoir of epizootic and zoonotic 
diseases such as bovine tuberculosis, trichinellosis or African swine fever 
(ASF) (Gavier-Widén et al., 2015; Gortázar et al., 2007). In the Czech 
Republic, the rise of wild boar population is demonstrated by the 1800 
% increase in number of hunted animals between years 1982–2012 
(“State veterinary Administration,” 2017). Ongoing epidemic ASF 
outbreak and its large-scale monitoring across Europe (Cwynar et al., 
2019) has resulted in hundreds of thousands of blood samples collected 
in various European regions. Such massive sampling and DNA 
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repositories offer a unique opportunity to examine wild boar as a 
sentinel for pathogens. 

The wild boar occurs throughout a wide spectrum of habitats, 
ranging from semi-arid environments to marshes, forests and alpine 
grassland. In the past several years, wild boar have also colonized the 
urban and periurban environment in several European cities (Licoppe 
et al., 2013). Ixodes ricinus is a dominant tick in many ecosystems of 
Central Europe and can feed on more than 300 vertebrate species 
(Rizzoli et al., 2014), including counting wild boar. This tick can 
transmit a wide range of pathogens including Borrelia spp., Anaplasma 
spp., Francisella spp., Rickettsia spp., Babesia spp., tick-borne encephalitis 
virus and several others (Boulanger et al., 2019). The role of wild boar as 
a host for ticks is described from many parts of the world (Lim et al., 
2020; Masatani et al., 2017; Merrill et al., 2018), but the relevant data 
from Europe are missing. In addition to I. ricinus (Honig et al., 2017; 
Silaghi et al., 2014; Skotarczak et al., 2008), studies occasionally also 
report wild boar infestations by Dermacentor reticulatus (Kazimírová 
et al., 2018) and D. marginatus (Maioli et al., 2012; Ortuño et al., 2006). 

Studies on tick-borne pathogens in wild boar in Europe are scarce. 
Bacteria responsible for Lyme borreliosis in the B. burgdorferi sensu lato 
group were repeatedly reported absent in the European wild boar pop
ulation, along with other tick-borne pathogens including Francisella 
spp., Rickettsia spp., and Neoehrlichia spp. (Kazimírová et al., 2018; 
Pereira et al., 2016; Silaghi et al., 2014; Skotarczak et al., 2008). 

Anaplasma phagocytophilum is the most studied tick-borne pathogen 
in wild boar across Europe. Prevalence in wild boar varies from zero in 
Spain and Italy (de la Fuente et al., 2005; Portillo et al., 2011; Torina 
et al., 2008) to 28.0 % in Slovakia (Kazimírová et al., 2018). The evi
dence of A. phagocytophilum based on different methods and genes of 
interest was reported also from Belgium (Nahayo et al., 2014), Portugal 
(Pereira et al., 2016), Slovenia (Strasek Smrdel et al., 2009), Romania 
(Kiss et al., 2014), Poland (Michalik et al., 2012), and Germany (Silaghi 
et al., 2014) listed in order of increasing prevalence from 1.0 %–12.5 %. 
The extensive serological survey on 224 wild boars in Slovenia with 69.6 
% seroprevalence of A. phagocytophilum (Zele et al., 2012) supported the 
potential role of wild boar in the endemic life cycle of this pathogen. 
Anaplasma phagocytophilum is a genetically polymorphic pathogen and 
circulating genetic variants differ in host range, clinical manifestation, 
and zoonotic potential. The range of genes including ankA, msp4, and 
groEL and the multi-locus approach were used to describe the different 
strains and the population structure (Bown et al., 2009; Chastagner 
et al., 2014; Huhn et al., 2014; Jaarsma et al., 2019; Jahfari et al., 2014; 
Scharf et al., 2011). These studies report clear delineation of strains from 
deer and other wild ruminants while dogs, horses, hedgehogs, and wild 
boar have been proposed as a reservoir of strains causing human gran
ulocytic anaplamosis (HGA) (Huhn et al., 2014; Michalik et al., 2012; 
Scharf et al., 2011; Smrdel et al., 2012; Strašek Smrdel et al., 2015). In 
Europe, HGA remains overlooked and underdiagnosed, mainly because 
of mild or asymptomatic cases (Matei et al., 2019). Since the initial case 
in 1997 in Slovenia (Petrovec et al., 1997), about 100 cases of HGA were 
confirmed, which is in contrast with reported seroprevalence 16.3 % in a 
healthy population and supports mostly mild and asymptomatic, thus 
unnoticed infections (Wang et al., 2020). 

Piroplasmids represent an important veterinary threat and possible 
risk to humans. The extensive knowledge on Babesia in deer species 
(Hrazdilová et al., 2020) is in contrast with missing data and unclear role 
of similarly abundant wild boar population. Molecular studies across 
Europe, targeting the 18S rRNA gene, report no findings of piroplasmids 
in wild boar populations in Hungary, Slovakia, Germany and Portugal 
(Hornok et al., 2018; Kazimírová et al., 2018; Pereira et al., 2016; 
Silaghi et al., 2014). The only findings of piroplasmids in wild boar were 
several reports of unspecified Theileria sp. in Italy and Portugal (Pereira 
et al., 2016; Tampieri et al., 2008; Zanet et al., 2014) and a single report 
of B. bigemina in Italy (Zanet et al., 2014). The etiological agent causing 
porcine babesiosis in domestic pigs reported from Sardinia, Italy (Zobba 
et al., 2011) was proven to be absent in a wild boar population in the 

same area (Zobba et al., 2014). The only two described Babesia species 
infecting pigs (including wild boar), B. trautmanni and B. perroncitoi, 
were detected mostly in 1990s based on morphology without any mo
lecular data (Penzhorn, 2006). 

In this study, we took an advantage of the extensive wild boar 
sampling campaign originally conducted to detect ASF and provide data 
on the prevalence and further genetic characterization of 
A. phagocytophilum and piroplasmids in wild boar from eleven districts 
on Moravia and Silesia in the Czech Republic. 

2. Materials and methods 

Samples of the wild boar DNA were acquired following the outbreak 
of ASF in the district Zlín of the Czech Republic in 2018. During eleven 
months, 9755 of wild boars were hunted by local hunters and examined 
for ASF by State Veterinary Institutes in Jihlava and Olomouc. The DNA 
was isolated from blood by the automatic system QIAsymphony SP 
(Qiagen, Germany) and the MagNA Pure 96 System or the MagNA Pure 
LC 1.0 Instrument (Roche, Switzerland) and aliquots were provided for 
detection of tick-borne pathogens. Each sample was labeled with the 
information on locality (nearest village), date of sampling, and age 
category (piglet, yearling, adult). Based on the locality, 50 samples were 
chosen from each of 11 available districts (Fig. 1A) resulting in the total 
550 samples analyzed for presence of A. phagocytophilum and 
piroplasmids. 

All PCRs were conducted with 2x PCRBIO Taq Mix Red (PCR Bio
systems, UK), first round reactions in nested protocols were done in the 
total volume of 15.0 μL using 2.0 μL of the template DNA. In the second 
round, we used 1.0 μL of the first round reaction as a template in the 
total volume of 25.0 μL. Details for each reaction are provided 
(Table S1). Anaplasma phagocytophilum was detected by nested PCR 
amplifying 407 bp of the groEL gene. For positive samples, the protocol 
amplifying 1297 nt of the GroESL operon was used. The detection of 
piroplasmids was done by the highly sensitive nested PCR targeting the 
variable region of the 18S rRNA gene. 

PCR products were visualized on 1.5 % agarose gel with the Midori 
Green Advance (Nippon Genetics Europe, Germany), products of the 
expected size were purified using the Gel/PCR DNA Fragments Extrac
tion Kit (Geneaid Biotech Ltd., Taiwan) and sequenced by the Macrogen 
capillary sequencing services (Macrogen Europe, the Netherlands) using 
the amplification primers. Obtained sequences were edited using the 
Geneious 9.1.2 software (Kearse et al., 2012) and identity of amplicons 
was confirmed by BLASTn analysis. Unique haplotypes were identified 
by ALTER (Alignment Transformation Environment) (Glez-Peña et al., 
2010). 

The dataset for subsequent phylogenetic analyzes was compiled from 
the GenBank sequences of the groEL gene longer than 1000 nt of A. 
phagocytophilum, representing all ecotypes. Due to an uneven length of 
sequences, the alignment was calculated in two steps by MAFFT algo
rithm, using “Auto” strategy for sequences >1000 nt and function –add 
for implementing sequences <1000 nt to the alignment. The phyloge
netic tree was generated by the maximum likelihood method by IQTREE 
v. 1.6.5 (Nguyen et al., 2015). The best-fit evolution model was chosen 
based on the Bayesian information criterion (BIC) computed by imple
mented ModelFinder (Kalyaanamoorthy et al., 2017). Branch supports 
were assessed by the ultrafast bootstrap (UFBoot) approximation (Minh 
et al., 2013) and by the SH-like approximate likelihood ratio test 
(SH-aLRT) (Guindon et al., 2010). The tree was visualized and graphi
cally edited using FigTree v1.4.1 and Inkscape v0.91. 

3. Results 

The DNA of A. phagocytophilum was detected in 28 wild boars (5.1 
%). The number of positive animals per 50 tested animals in each district 
ranged from 0 in Zlín (ZL) up to 5 in Nový Jičín (NJ). The prevalence 
slightly increased with age; from piglets (6/175, 3.4 %), yearlings (15/ 
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Fig. 1. A) Map of sampling areas across eleven districts of Moravia and Silesia in the Czech Republic. District abbreviation: BV – Břeclav, FM – Frýdek Místek, HO – 
Hodonín, KM – Kroměříž, NJ – Nový Jičín, OL – Olomouc, PR – Přerov, UH – Uherské Hradǐstě, VS – Vsetín, VY – Vyškov, ZL - Zlín B) Schematic representation of the 
maximum likelihood phylogenetic tree based on the groEL gene sequences of A. phagocytophilum longer than 1000 nt representing all ecotypes. The highlighted clade 
representing the Ecotype I is displayed in details; bootstrap values (SH-aLRT/UFB) above the 80/95 threshold are displayed; all sequences included in the analysis are 
listed in Table S2. Five sequences of A. platys used as an outgroup are not displayed. C) detailed view of the clade representing the Ecotype I/Cluster I; sequences 
acquired from the GenBank database are marked by their accession number, host and country of origin. Sequences from this study are highlighted in red and marked 
by the number of a respective haplotype. The scale bar indicates the number of nucleotide substitutions per site (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article). 

K. Hrazdilová et al.                                                                                                                                                                                                                            



Ticks and Tick-borne Diseases 12 (2021) 101558

4

270, 5.6 %) to adults (2/22, 9 %), but without statistical significance (χ2 

(1, N = 467) = 1.88, p = .39). From 28 samples, 18 long (>1150 nt) and 
10 short (300–400 nt) sequences of the groEL gene were obtained, rep
resenting 6 unique haplotypes (deposited to GenBank under accession 
numbers MT498612-7). The main haplotype (represented by sample no. 
1306) was detected in 21 samples from 7 different districts. The second 
most abundant haplotype (no. 5476) originated from three samples from 
three different districts; remaining haplotypes were represented by one 
sample each. Distances between haplotypes ranged from 0.25 % (3 
SNPs/1210 nt) between haplotypes 1306 and 5476 to 2.19 % (8 SNPs/ 
366 nt) between haplotypes 1117 and 2506. Nearest hits for each 
haplotype available in the GenBank database are listed in Table 1. 

In phylogenetic analyses (Fig. 1B), all detected haplotypes clustered 
in the largest clade representing the European ecotype I (Jahfari et al., 
2014) closely related to the USA isolates and formed the Cluster I 
(Jaarsma et al., 2019). Three haplotypes (1306, 2590 and 1177) fell to 
the subclade with the European human cases and strains from dogs and 
horses. The other three haplotypes were scattered among strains mostly 
from cattle and red deer (Fig. 1C). 

Nested PCR targeting the variable region of the 18S rRNA gene of 
piroplasmids resulted in an amplicon of the expected size, approx. 560 
bp, in 25 out of 550 samples tested (4.5 %). However, sequencing 
confirmed the piroplasmid DNA only in a single sample from district 
Přerov (PR, Fig. 1A) with 99.8 % identity to B. divergens from a red deer 
from the Czech Republic (acc.no. MG344780). PCR targeting the mito
chondrial COX1 gene (Hrazdilová et al., 2020) to confirm the identity of 
detected Babesia sp. was negative. Remaining amplicons were identified 
by sequencing and BLAST analyses with 100 % identity as Sarcocystis 
miescheriana in 21 samples (3.8 %), and Eimeria polita and Cystoisospora 
suis in two and one sample, respectively. 

4. Discussion 

In the human dominated landscape, in addition to rodents, the 
medium-sized and large mammals including foxes, roe deer, and wild 
boar serve as hosts for ticks and may play a role in the ecology of tick- 
borne pathogens. The overpopulation of wild boar in Europe raises 

concerns in several aspects, including the involvement of these abun
dant hosts in maintenance of tick populations, shift of natural trans
mission cycles of pathogens, and spillover of pathogens in humans and 
domestic animals (Rizzoli et al., 2014). 

The overall prevalence 5.1 % of A. phagocytophilum in this study is in 
accordance with the report of 6.0 % prevalence from wild boar in the 
Czech Republic detected by qPCR targeting the 16S rRNA gene 
(Hulínská et al., 2004) and also with the data from the forested 
temperate areas of Europe reporting prevalences 2.7–12.0 % (reviewed 
in Stuen et al., 2013). These results are in stark contrast to data from 
syntopic and similarly abundant free-ranging ruminants (several deer 
species, chamois, mouflon, etc.) where A. phagocytophilum was detected 
in >50 % of animals tested (Stuen et al., 2013). The low prevalence of 
A. phagocytophilum in wild boar in Europe implies participation of these 
animals in circulation of this pathogen (Strasek Smrdel et al., 2009; Zele 
et al., 2012) but indicates their rather limited role as a reservoir of 
A. phagocytophilum when compared to that of cervids (Jaarsma et al., 
2019). 

In our study, we followed the classification of A. phagocytophilum 
based on partial groEL sequences as introduced by Jahfari et al. (2014) 
and extended by Jaarsma et al. (2019). All six detected haplotypes 
belonged to the ecotype I/cluster I. This clade is associated with the 
broadest host range and I. ricinus as the vector with the distribution 
across the Western Palearctic and Nearctic regions (Jaarsma et al., 
2019). Importantly, ecotype I includes all genetically characterized 
strains detected from the human cases in Europe (Matei et al., 2019). 
The BLAST analyses of haplotypes detected in the Czech Republic 
confirmed the dominance of the genotype previously associated with 
several human cases in Slovenia (Smrdel et al., 2012), Poland (Welc-
Falȩciak et al., 2018, 2014) and the Netherlands (Jahfari et al., 2016). 
The same haplotype was found in three wild boars in the Czech Republic 
in 2003 near Znojmo (Petrovec et al., 2003) and recently in Slovakia 
(Kazimírová et al., 2018). Furthermore, this haplotype was also detected 
in dogs and horses of different geographical origins, which is in 
concordance with previous studies using various genes and multi-loci 
classification (Chastagner et al., 2014; Huhn et al., 2014; Michalik 
et al., 2012; Scharf et al., 2011; Strašek Smrdel et al., 2015). The 
epidemiological cycles of A. phagocytophilum are poorly understood, 
while red deer have been suggested as the reservoir of non-zoonotic 
haplotypes of the ecotype I and rodents as a reservoir of other eco
types (Dugat et al., 2015), the most likely candidates for a reservoir of 
zoonotic haplotypes remain wild boar. 

From the set of 550 wild boar samples from 11 districts of the Czech 
Republic, we demonstrated that the wild boar population has negligible 
importance in circulation of piroplasmids, with only a single B. divergens 
positive individual using the highly sensitive nested PCR protocol. 
Previous studies reporting absence of piroplasmids across Europe were 
done on a low number of samples (<100) and using qPCR or simple PCR 
protocols for detection (Hornok et al., 2018; Kazimírová et al., 2018; 
Silaghi et al., 2014). The only exception was the study in Portugal 
reporting 3 out of 65 wild boars positive for Theileria sp. with the 
98.0–99.0 % identity to T. capreoli (Pereira et al., 2016). Two European 
studies on a larger number of samples were done in Italy, using simple 
and semi-nested PCR found two B. bigemina and two Theileria sp. positive 
individuals out of 257 tested (Zanet et al., 2014) and three Theileria sp. 
out of 117 (Tampieri et al., 2008). Application of methods with the 
highest possible sensitivity targeting the 18S rRNA gene appears to be 
the only reliable approach to detect the DNA of piroplasmids in samples 
with low parasitemia and prevalence (Hrazdilová et al., 2019). 

Presence of the two pathogens that are primarily circulated by 
I. ricinus confirms the local participation of wild boar in the host spec
trum of this tick. Even though the prevalence of A. phagocytophilum is not 
high, the dominance of the zoonotic haplotype in these animals together 
with their abundant population in Europe warrants experimental studies 
to address wild boar as a reservoir of this pathogen. Numbers of wild 
boar sampled within ASF monitoring, together with the fact that its 

Table 1 
Unique haplotypes of the A. phagocytophilum groEL gene detected in a wild boar 
population and their nearest BLAST hits. District abbreviation: FM – Frýdek 
Místek, HO – Hodonín, KM – Kroměříž, NJ – Nový Jičín, OL – Olomouc, PR – 
Přerov, UH – Uherské Hradǐstě, VS – Vsetín, VY – Vyškov.  

Haplotype 
no. 

No. of 
samples 

Districts GenBank 

1306 (1206 
nt) 

21 FM, KM, NJ, 
OL, PR, UH, 
VY 

100 % AF033101 (human, 
Slovenia), AY529490 (horse, 
Sweden), AF482760 (horse, 
Germany) 

5476 (1205 
nt) 

3 FM, NJ, UH 100 % AY281823 (I. ricinus, 
Germany) 

1177 (366 
nt) 

1 PR 99.45 % MN093180 (I. ricinus, the 
Netherlands), MG570466 (human, 
Poland), MF061238 (S. scrofa, 
Slovakia), KT970680 (dog, Italy), 
KU712132 (V. vulpes, Germany), … 

2506 (366 
nt) 

1 HO 99.18 % MT025713 (I. ricinus, Italy), 
MN093256 (I. ricinus, the 
Netherlands), MK069963 
(C. elaphus, Norway), KU712128 
(C. nippon, Germany), KJ832471 
(horse, France), … 

2590 (366 
nt) 

1 VS 99.73 % MN093180 (I. ricinus, the 
Netherlands), MG570466 (human, 
Poland), MF061238 (S. scrofa, 
Slovakia), KT970680 (dog, Italy), 
KU712132 (V. vulpes, Germany), … 

4012 (366 
nt) 

1 HO 100 % MK069706 (C. elaphus 
Norway)  
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diagnostics is mostly based on examination of DNA samples, make the 
wild boar promising sentinels for vector-borne and other pathogens. If 
properly managed and shared, these DNA samples can be used for the 
Europe-wide monitoring of a range of pathogens. 
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Kuiken, T., 2015. African swine fever in wild boar in Europe: a notable challenge. 
Vet. Rec. 176, 199–200. https://doi.org/10.1136/vr.h699. 
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phagocytophilum in animals by real-time polymerase chain reaction. Apmis 112, 
239–247. https://doi.org/10.1111/j.1600-0463.2004.apm11204-0503.x. 

Jaarsma, R.I., Sprong, H., Takumi, K., Kazimirova, M., Silaghi, C., Mysterud, A., 
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National Park, Poland. Oecologia 90, 27–36. https://doi.org/10.1007/BF00317805. 

Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A., Jermiin, L.S., 2017. 
ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 
14, 587–589. https://doi.org/10.1038/nmeth.4285. 
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Nores, C., Llaneza, L., Álvarez, Á., 2008. Wild boar Sus scrofa mortality by hunting and 
wolf Canis lupus predation: an example in northern Spain. Wildl. Biol. 14, 44–51. 
https://doi.org/10.2981/0909-6396(2008)14[44:wbssmb]2.0.co;2. 

Oja, R., Soe, E., Valdmann, H., Saarma, U., 2017. Non-invasive genetics outperforms 
morphological methods in faecal dietary analysis, revealing wild boar as a 
considerable conservation concern for ground-nesting birds. PLoS One 12, 1–9. 
https://doi.org/10.1371/journal.pone.0179463. 

Okarma, H., Jędrzejewska, B., Jędrzejewski, W., Krasiński, Z.A., Miłkowski, L., 1995. The 
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